
CHITAS - a mouse tracking system in a web
environment

Abstract— Eye tracking may be very effective and has great
potential in user interface optimisation. The main disadvantage
of tracking what a user is looking at is the need for complex and
expensive equipment, and a controlled laboratory environment.
Mouse tracking is a widely applicable alternative to eye tracking.
This paper presents the architecture of CHITAS (Computer-
Human Interaction Tracking and Analytics System) which
enables information to be gathered about mouse movement in a
web environment, and analytical processing of the collected data.

Keywords – Eye tracking; mouse tracking; PHP; visualisation

I. INTRODUCTION
Eye tracking may be very effective and has great potential

in user interface optimisation. One of most common uses of
the information gathered using eye tracking is in the
optimisation of the user interface [1] [2].

The main disadvantage of research using eye tracking is
the need for complex and expensive equipment and a
laboratory controlled environment, which significantly
narrows the field of application for this system. In addition to
the complex hardware used for tracking the user’s pupil, there
is complex software running in the background of the eye
tracking system – working by finding pupils on a saved image
[3], to matching that image with the position of the screen.
The most widely applicable alternative to eye tracking is
mouse tracking. The main reasons for using mouse tracking
are the low tech demands, its simplicity and a high rate of
correlation between approaches [4]. This method can be used
on the internet, for example, to track user interactions with
different web applications [5].

This paper presents the architecture of the CHITAS system
(Computer-Human Interaction Tracking and Analytics
System) which enables the collection of information about
mouse tracking in a web environment, and also the analytical
processing of the collected data.

II. TRACKING SYSTEM ARCHITECTURE

When evaluating website design, commonly used
methods such as A/B testing, are relatively easy to
implement but generally give only very general results. A
significant failure of A/B testing, especially when it
comes to sites with relatively low traffic, is the fact that
it takes a long time to obtain statistically verified
conclusions. For example, on a site that is visited daily
by approximately 200 visitors, with an efficiency of 20%,
confirmation of a 10% increase in efficiency would require
64 days of testing. This calculation refers to the testing of

only two variants, the site or any part thereof. In the case of
A/B using the ten tested embodiment, the time needed to
produce statistically significant results is 320 days. In
most real situations the specified times are not acceptable
because the results could be obsolete by the time they are
produced [6].

For visitor tracking purposes we developed a system called
the Computer-Human Interaction Tracking and Analytics
System - CHITAS. It's a client-server solution that is easily
integrated into the web page we want to track by adding a
JavaScript code snippet. Tracking is initialised after the
“document ready” page loading event is fired. The JavaScript
component involves collecting data about various aspects of
user behaviour (mouse movements, clicks, text selections,
keys pressed...) and sending it as JSON encoded data to a
server via AJAX calls. The component on the server side is a
web application where PHP is accepting data from the client
side and is storing it to a MySQL database.

Another part of the CHITA system is dealing with the
visualisation/analytic of collected data. Some functions,
mostly for data filtering and exporting, are realised directly in
PHP, however, for greater flexibility, visualisation and more
complex analyses are done on CVS exported data within tools
like R or MatLab.

The mouse tracking system we developed for our research
is able to detect five levels of objects that are involved in
presenting web content: screens, windows, viewports, pages
and wrappers. The screen is area of physical display, a matrix
of pixels with a dynamic width and height.

Figure 1. Display structure

Sinergija University International Scientific Conference

131 DOI: 10.7251/ZRSNG1501131J

A Jevremovic, Singidunum University, N. Ristic, Univerzitet Sinergija, and M. Veinovic, Singidunum University

The window area is the web browser's GUI window object,
with variable width, height and position on screen. Pixels in
all windows are usually displayed within the screen area and
the system has detected that the most of visitors are using Web
browser within maximized window. The system is also able to
detect whether a window is active (in focus) or not
(minimised, or behind some other window) which is also
important for our research.

The viewport area is a “useful” part of a web browser's
window, or the part where a loaded web page is actually
displayed. The size of this area is equal to the window's size
minus the window title and border, toolbars and status bar.
Scrollbars, if any, are included within the viewport area. When
the web browser is in full-screen mode, the viewport area is
equal to the window size and screen size.

Page area is a representation of the body element within a
HTML document. The page area can fit within the viewport
area if the page's content doesn't require more space for
display. Where that content's display size is less than the
available viewport size, the page area is expanded to fit the
viewport size. Conversely, if displaying content requires more
space than viewport area, page size is adapted to content size
and viewport scrollbar(s) are enabled.

Figure 2. Page with no horizontal or variable vertical offset.

Figure 3. Page with no horizontal or variable vertical offset.

Offsets are a measure of how many pixels a page scrolls
vertically or horizontally. Even if we are able to directly
calculate the mouse position relative to the page/wrapper,
putting it in a viewport/offset context can provide additional
useful data, because users interact differently with different
viewport parts [6].

Figure 4. Wrapper position with “auto” left and right margins.

 the wrapper is the page content part on which our tracking
is focused. It can be any displayed part of the content, but is
usually the DOM element within the body element where
whole page content is contained. In our case, we used one div
element with the “TPL_Wrapper” value of the “ID” attribute,
which was the only child of the body element and which
contained all the page content within itself. The wrapper size
in our experiment was 878 pixels and both left and right
margins were set to “auto” which resulted in a horizontally
cantered wrapper area. We consider this (horizontally cantered
content) as generally good practice, but especially useful in
eye/mouse tracking experiments, because content is displayed
directly in front of visitors.

The CHITA System can be implemented as an individual
process (tracking server) or as a proxy.

Sinergija University International Scientific Conference

132 DOI: 10.7251/ZRSNG1501131J

Figure 5. Tracking server model as a standalone service

Figure 6. Proxy implementation model

The proxy implementation model is better for

implementation when the content of a web application can’t be
changed and when it is necessary to save a response for later
assessment (Dynamic content).

The mouse tracking component on the client side is written
in JavaScript language and uses DOM events. Different events
are used to provide the necessary mouse tracking data:
mousemove, mousedown, mouseup, click, dblclick,
mouseover, mouseout, mouseenter, mouseleave, and wheel.

This client-side component is communicating with the
server in two ways. Initially, some parameters (unique request
ID, visitor's ID, visit's ID...) are inserted in the JavaScript
code, during the response generating process.

After the component is loaded and initialised on the client's
browser, it periodically sends captured data to the server-side
component within AJAX requests. This synchronisation is
done every second, no matter whether there are captured
events or not.

A. Protocol for mouse tracking data collecting
The communication protocol between client-side and

server-side components of our system is based on AJAX
(XMLHttpRequest) requests and uses HTTP(S) as the
underlying protocol. All requests are JSON encoded matrices
containing captured events parameters. In addition to regular
DOM events, two more event types are added: register and
ping.

A register event is fired and sent to the server immediately
after a page is loaded. Within this request to the server some
general parameters are sent - requested hostname and URL,
visitor's IP and UserAgent attributes. Because of the large size
of this data, it is transferred to a server only once, within the
first, register event.

Figure 7. Possible states of client-side protocol

A ping event is used for synchronisations, when no events
are captured until the last synchronisation. We found this
event useful for monitoring whether a web page is still open
client side, and for keeping connections alive. There is also a
synchronisation counter on both sides (similar to a TCP
window size mechanism) which prevents lost data. We
performed some experiments with request compression, in
order to decrease request size, but the ratio between saved
bandwidth and data loss has not justified inclusion of this
functionality.

B. Database and bandwidth considerations
The database table that contains captured events

parameters has 40 columns, and the average record size is
about 300 bytes. For the purpose of this paper we saved
3,310,894 events to the database, which required around 1GB
or space ~300MB table for 3,000,000 inputs. For 560 visits,

Sinergija University International Scientific Conference

133 DOI: 10.7251/ZRSNG1501131J

3500 pages, and around 5 minutes averagely per minute for
visit:

• ~857 lines per opened page -> 2.86 lines per second
(even distribution)

• 2.86 x 300B = ~1KB/s per user

These calculations should be considered in the planning
infrastructure for implementing tracking systems on more
intensively used web sites. For example, we tested tracking
system robustness on one website that at its peak is used by
nearly a thousand parallel visitors. The result was around
1MB/s of incoming tracking data that should be received by
the server and stored in a database. A database of that size,
with that level of use, would reach 1TB in less than two
weeks.

III. CONCLUSION
This paper presents the architecture of system CHITAS

(Computer-Human Interaction Tracking and Analytics
System), which enables information about mouse tracking in a
web environment to be collected, and also the analytical
processing of collected data.

The Computer-Human Interaction Tracking and Analytics
System solution is easily integrated into web pages by adding
a JavaScript code snippet. Tracking is initialised after the
“document ready” page loading event is fired. The JavaScript
component collects data about various aspects of user
behaviour (mouse movements, clicks, text selections, keys
pressed...) and sends it out as JSON encoded data to servers
via AJAX calls. The component on the server side is a web
application where PHP accepts data from the client side and
stores it to a MySQL database.

Another part of the CHITA System involves dealing with
the visualisation/analysis of collected data. Some functions,
mostly for data filtering and exporting, are realized directly in
PHP, however, for greater flexibility, visualisation and more
complex analysis are done on CVS exported data within tools
like R or MatLab.

The mouse tracking system developed for our research in
this paper is able to detect five levels of objects that are
involved in presenting web content: screens, windows,
viewports, pages and wrappers. Screen is the area of physical
display, a matrix of pixels with dynamic width and height.

REFERENCES
[1] J. Nielsen and K. Pernice, Eyetracking web usability, New Riders, 2010.
[2] J. H. Goldberg, M. J. Stimson, M. Lewenstein, N. Scott and A. M.

Wichansky, "Eye tracking in web search tasks: design implications”,
Proceedings of the 2002 symposium on eye tracking research &
applications, pp. 51-58, 2002.

[3] M. Stojmenovic, A. Jevremovic and A. Nayak, "Fast iris detection via
shape based circularity”, Industrial Electronics and Applications
(ICIEA), pp. 747-752, 2013.

[4] J. Huang, R. White and G. Buscher, "User see, user point: gaze and
cursor alignment in web search”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 1341-1350,
2012.

[5] A. Jevremovic, M. Sarac and M. V. Milan Milosavljevic, "Analyzing the
behavior of students during electronic testing,”, in 1st International
Conference on Electrical, Electronic and Computing Engineering, 2014.

[6] A. Jevremovic, S. Ž. Adamović and M. Veinović, "Mousetracking
visitors to evaluate efficacy of web site design”, SERBIAN JOURNAL
OF ELECTRICAL ENGINEERING, 2014.

Sinergija University International Scientific Conference

134 DOI: 10.7251/ZRSNG1501131J

